

Finemet Current Transformer Component Datasheet

Prepared for:	CBMM North America
	1000 Omega Drive
AYCBIIIII	Pittsburgh, PA 15205

Description of Device Under Test (DUT).

The current transformer is a measurement device which reduces high voltage currents to a lower value to provide a proper value of measuring current flowing through a current carrying conductor. The output is supplied into a resistive load such that the secondary core will saturate or cause failure into excessive voltage breakdown. Specifically, the current transformer is configured to be a toroidal current transformer, or the line that has the current flowing is the primary winding, and the voltage is read across the resistor. Compared in performance are two configurations with two core types: comparing a Silicon Steel Core with a Finemet Core.

Test Facility			
Test Laboratory	AMPED		
Address	1435 Bedford Avenue		
City, State, Zip Code	Pittsburgh, PA 15219		
Phone	412-802-0988		
Fax:	412-802-0779		
Website:	https://pittamped.github.io		

Test Personnel			
Name	Chris Bracken		
Title	Research Associate		
Signature	aller for		

Datasheet Revision History

Revision	Date	Description	Revised By
N / C	Date of Release	Initial Release	CSB (Initials of Revisor)
А	29MAR2023	Addition of tests and additional data added to report.	CSB

Finemet Current Transformer						
	Dimensions					
Description	Symbol	Sample Dimension (mm) ¹	Actual Dimension Used (mm) ¹	_D		
Core Inner Diameter	ID	36.96	37.1			
Core Outer Diameter	OD	51.53	52.3			
Core Height	Н	22.43	22.8			
¹ Sample Dimension refers to the dimensions that include coating.						
These dimensions do not pertain to the effective area used, as this						
effective area was stated in the provided core manufacturer datasheet.						
A correction factor accounts for this where plausible, taking the ratio						
of Sample Dimension-to-Actual Dimension, multiplying the cross-			OD			
sectional area with this term (See AMPED standard AMP-STD-0C for						
this calculation	and for other	calculations)				

Magnetic Characteristics					
Description	Symbol	Finished Dimension	Unit		
Effective Area	Ae	73	mm ²		
Mean Magnetic Path Length	Lm	141	mm		
Core Mass	См	0.0746	kg		
Density	D	7350	kg / m ³		
Lamination Thickness	L _M	0	μm		
Chemistry	Finemet Material	Grade			
Anneal		Impregation	Unimpregnated		
Core Supplier	D HITACHI	Part Number	FT-3K50T F5040GS		
Wire Supplier	Remington	Wire Gauge	30 AWG (Primary) 24 AWG (Secondary)		

3

Configuration and Design.

All testing was performed using the mode(s) of operation and configuration(s) noted within the report. Individuals who designed or performed the testing provided the modes, configurations, and settings used to complete the evaluation. The actual test parameters are specified in the test data, in accordance with the test standard it was performed and evaluated along. The design is provided here. In particular, the design used off-the-shelf cores for the comparison between core types.

DUT					
Description	Manufactured for	Model Number	Part Number	Serial Number	
Instrument Current Transformer	СВММ	N/A	N/A	N/A	

Core and wire configuration for Finemet Current Transformer.

Table 1: Component Design Parameters.							
Primary Turns	1	Turn	Secondary	Turns	50	Turns	
Design Primary Current	100	A _{pk}					
Load Resistance	5	Ω	Load Resis	Load Resistor Design Heat Disspation (W)			
					at 60 Hz		8.49
					at 1000 Hz		9.99
					at 10000 Hz		10

Design Personnel			
Name	Mark A. Juds		
Title	Research Associate		
Signature	Mark A. Juds		

Summary of Tests Performed and Results.

	Table 2: Tests Performed and Results.					
Datasheet Section	Test Description	Specification	Notes	Results		
IEEE C57.13-2016			• •			
1.1	Polarity. Subclause 8.3.	IEEE C.57-13-2006	DC and AC Voltage.	Compliant.		
	Excitation Current and Losses. Subclause 8.2.3.	IEEE C.57-13-2006	Excitation to 7 Amps.			
	Ratio and Phase Angle. Section 9.1.	IEEE C.57-13-2006	Calculated Transformer Ratio and Phase Angle of Waveforms.			
	Impedance Measurements. Section 9.3.	IEEE C.57-13-2006	Impedance Magnitude and Phase of Core and noted of DUT.	Compliant.		
IEC 61869-1 / IEC 61	869-2.					
	Magnetizing Inductance. Subclause 2B.2.2 / 2B.2.2.1	IEC 61869-1 / IEC 61869-2.	Inductance Measurements of core and noted of DUT.			
	A.C. Method: Remanence Factor. Subclause 2B.2.2 / 2B.2.2.3.	IEC 61869-1 / IEC 61869-2.	Results coincide to measurements from IEEE C.57.13-2016 Subclause 8.2.3.			

Applicable Standards

Reference Specification Title	IEC 61869-1
	IEC 61869-2
	IEEE C57.13-2016

Section One: Polarity.

Electromagnetic Component Testing: Test Procedures and Results.

Purpose.

This test procedure is used to determine current transformer core polarity for wiring purposes, both with DC and AC Current.

Test Equipment.

The test equipment shall be used as follows:

Lab Asset Number	Description	Manufacturer	Model Number	Serial Number
WAV0003	Arbitrary Waveform Generator	Keysight Technologies	EDU33212A	CN61310043
AMP0001	High Speed Power Amplifier	NF Electronic Instruments	4025	4025-112
OSC0003	Oscilloscope (500 MHz)	Keysight Technologies	MSOX4054A	MY61260112
PRO0002	Differential Probe	Rigol	RP025D	2014187
PRO0005	AC / DC Current Probe	Keysight Technologies	1147B	JP61071359
MET0001	Digital Multimeter	Fluke	4025	4025-112
PS0004	GPD-Series Multi Output Programmable Linear D.C. Power Supply	GwInstek	GPD-43038	GE8916-315
LAB0001	Computer	AMPED	None	None

Test Procedures.

I. Polarity Testing – DC Voltage – Manual Procedure.

Per guidelines established from the IEEE C57.13-2016 standard, below is the procedure for manual operation of equipment for the DC Voltage Setup, to be applied as follows. For a more detailed and general procedure to apply the test, refer to the referenced standard described here.

- a. Turn on the measurement equipment and allow sufficient time for stabilization (e.g. 20 minutes).
- b. Be sure the current transformer is unloaded for these measurements.
 - a. This is noted in the DUT Configuration table for this test below.
- c. Set the DC Power Supply to setting suitable for current rating of wire used with Current Transformer.
 - The following settings were used for the testing, noted for replication:
 - Current. Set current limit to 3.2 A.
 - Voltage. Set the voltage limit to 15 V.
 - Wire Gauge. Use 30 AWG Magnet wire.
- d. Connect the primary wire to the DC Power supply.
 - Be sure these are connected directly or a suitable connector is installed along the primary wire.
- e. Connect the leads from the Multimeter to the output of the current transformer.

- Specify Multimeter Setting(s) relevant.
 - Measurements were performed with the Multimeter set at DC Voltage, and with the probes connected to the leads of the current transformer from alligator cable extensions.
- f. Turn output of DC Power Supply on.
- g. Observe the change in voltage polarity with applied voltage.
- h. Turn DC Power supply output off upon completion of test.
 - If voltage transitions from a positive (+) to negative (-) polarity, mark the positive lead.
 - If voltage transitions from a negative (-) to positive (+), switch the leads at the current transformer and repeat the procedure of steps a-g.

II. Polarity Testing – AC Voltage – Manual Procedure.

Per guidelines established from the IEEE C57.13-2016 standard, below is the procedure for manual operation of equipment for the AC Voltage Setup, to be applied as follows. For a more detailed and general procedure to apply the test, refer to the referenced standard described here.

- i. Turn on the measurement equipment and allow sufficient time for stabilization (e.g. 20 minutes).
- j. Set the Arbitrary Waveform Generator to the following settings.
 - Begin with a low signal.
 - Frequency. Set frequency at 60 Hz. IEEE C57.13-2016 states frequency as specific operating point.
 - Amplitude. Begin with an amplitude value, in terms of peak-to-peak (V_{PP}), at 10 milli. Increase where deemed appropriate to make sure a fully functioning signal is observed in an acceptable tolerance.
 - Specific Test Levels:
 - 12 mV_{pp}: Finemet Current Transformer.
- k. Set the Power Amplifier values.
 - Be sure to press input cable connected to on (usually A).
 - Press the desired gain. Performed in these tests at "X50".
- 1. Set the Oscilloscope to the following settings.
 - Specify Probe Attenuation.
 - Measurements were performed with a Keysight 1147B Current Probe has a fixed attenuation ratio of 0.1 V/A and cannot be changed.
 - Voltage Probe from Rigol, the RP1025D, was used for measurements, and has fixed attenuation ratio of 200:1 after calibration. Probe with Asset Number PRO0002 was used to acquire data the waveform.
 - The data was captured with High Resolution Settings under Waveform-Acquire Menu.
- m. Turn output of Arbitrary Waveform Generator on.
- n. Level the output voltage at the offset adjust with flat head screw driver, if possible. Note if probe does not have that capability.
 - For data presented, Voltage probe with asset number PRO0009 does not have the capability.
- o. Examine the Waveform on the Oscilloscope read from the Current Probe on the input side and the Differential Probe on the Output Side.
 - Be sure to capture 3 5 periods of the excitation signal being applied.
- p. Auto zero and Degauss the Current Probe before step i. Also Degauss where Average Current Waveform value climbs above an acceptable tolerance of +/- 10 mA.
- q. Record relevant data for Data Presentation.
- r. Turn off waveform generator upon completion.

Data Presentation.

In this section, data is presented as each section indicates below.

a. DC Voltage Results.

b. AC Voltage Results.

In this section, data is presented as each section indicates below.

Sinusoidal Excitation Waveform and B-H Plot for Polarity: Finemet Current Transformer. Sinusoidal Signal. 12.00 mV_{pp} 60Hz, Amplifier Gain X50.

Revision: A

Setup.

DC Voltage. Configure the test equipment as shown below, with one figure showing the actual test setup for the Magnesil Core and one for the Finemet Core.

Polarity Testing – DC Voltage. Typical Test Setup: Finemet Current Transformer.

Polarity Testing – AC Voltage. Typical Test Setup: Finemet Current Transformer.

Section Two: Excitation and Remanence. Electromagnetic Component Testing: Test Procedures and Results.

Purpose.

This test procedure is used to determine current transformer Excitation and Remanence points at design frequencies and with fixed current.

Test Equipment.

The test equipment shall be used as follows:

Lab Asset Number	Description	Manufacturer	Model Number	Serial Number
WAV0003	Arbitrary Waveform Generator	Keysight Technologies	EDU33212A	CN61310043
AMP0001	High Speed Power Amplifier	NF Electronic Instruments	4025	4025-112
OSC0003	Oscilloscope (500 MHz)	Keysight Technologies	MSOX4054A	MY61260112
PRO0002	Differential Probe	Rigol	RP1025D	2014187
PRO0005	AC / DC Current Probe	Keysight Technologies	1147B	JP61071359
MET0001	Digital Multimeter	Fluke	4025	4025-112
PS0004	GPD-Series Multi Output Programmable Linear D.C. Power Supply	GwInstek	GPD-43038	GE8916-315
LAB0001	Computer	AMPED	None	None

Test Procedures.

I. Excitation and Remanence Testing – Manual Procedure.

Per guidelines established from the IEEE C57.13-2016 and IEEE 61869-2 standards, below is the procedure for manual operation of equipment for the AC Voltage Setup, to be applied as follows. For a more detailed and general procedure to apply the test, refer to the referenced standard described here.

- c. Turn on the measurement equipment and allow sufficient time for stabilization (e.g. 20 minutes).
- d. Set the Arbitrary Waveform Generator to the following settings.
 - Begin with a low signal.
 - Frequency. Set frequency at 60 Hz. IEEE C57.13-2016 states frequency as specific operating point.
 - Amplitude. Begin with an amplitude value, in terms of peak-to-peak (V_{PP}), at 10 milli. Increase where deemed appropriate to make sure a fully functioning signal is observed in an acceptable tolerance.
 - Specific Test Levels:
 - Around 7 Amps measured from current probe.
- e. Set the Power Amplifier values.
 - Be sure to press input cable connected to on (usually A).
 - Press the desired gain. Performed in these tests at "X50".

- f. Set the Oscilloscope to the following settings.
 - Specify Probe Attenuation.
 - Measurements were performed with a Keysight 1147B Current Probe has a fixed attenuation ratio of 0.1 V/A and cannot be changed.
 - Voltage Probe from Rigol, the RP1025D, was used for measurements, and has fixed attenuation ratio of 200:1 after calibration. Probe with Asset Number PRO0002 was used to acquire data the waveform.
 - The data was captured with High Resolution Settings under Waveform-Acquire Menu.
- g. Turn output of Arbitrary Waveform Generator on.
- h. Level the output voltage at the offset adjust with flat head screw driver, if possible. Note if probe does not have that capability.
 - For data presented, Voltage probe with asset number PRO0002 does not have the capability.
- i. Examine the Waveform on the Oscilloscope read from the Current Probe on the input side and the Differential Probe on the Output Side.
 - Be sure to capture 3 5 periods of the excitation signal being applied.
- j. Auto zero and Degauss the Current Probe before step i. Also Degauss where Average Current Waveform value climbs above an acceptable tolerance of +/- 10 mA.
- k. Record relevant data for Data Presentation.
- 1. Turn off waveform generator upon completion.

Data Presentation.

In this section, data is presented as each section indicates below.

a. Sinusoidal Excitation.

19

Setup. DC Voltage. Configure the test equipment as shown below, with one figure showing the actual test setup for the Magnesil Core and one for the Finemet Core.

Polarity Testing – DC Voltage. Typical Test Setup: Finemet Current Transformer.

Section Three: Ratio and Phase Angle. Electromagnetic Component Testing: Test Procedures and Results.

Purpose.

This test procedure is used to determine current transformer ratio and phase angle with points at design frequencies and with fixed current.

Test Equipment.

The test equipment shall be used as follows:

Lab Asset Number	Description	Manufacturer	Model Number	Serial Number
WAV0003	Arbitrary Waveform Generator	Keysight Technologies	EDU33212A	CN61310043
AMP0001	High Speed Power Amplifier	NF Electronic Instruments	4025	4025-112
OSC0003	Oscilloscope (500 MHz)	Keysight Technologies	MSOX4054A	MY61260112
PRO0003	10:1 200 MHz Differential Probe	Keysight Technologies	N2792A	PH61260009
PRO0005	AC / DC Current Probe	Keysight Technologies	1147B	JP61071359
MET0001	Digital Multimeter	Fluke	4025	4025-112
CAP0003	0.01 uF Capacitor	Cornell Dubilier Electronics (CDE)	SCRN244R-F	None
RES0001	5 Ohm Resistor	Riedon	UB15-5RF1	None
LAB0001	Computer	AMPED	None	None

Test Procedures.

I. Ratio and Phase Angle Testing – Manual Procedure.

Per guidelines established from the IEEE C57.13-2016 standard, below is the procedure for manual operation of equipment for the ratio and phase angle setup, to be applied as follows. For a more detailed and general procedure to apply the test, refer to the referenced standard described here.

m. Turn on the measurement equipment and allow sufficient time for stabilization (e.g. 20 minutes).

n. Set the Arbitrary Waveform Generator to the following settings.

- Begin with a low signal.
 - Frequency. Set frequency at 60 Hz. IEEE C57.13-2016 states frequency as specific operating point.
 - Amplitude. Begin with an amplitude value, in terms of peak-to-peak (V_{PP}), at 10 milli. Increase where deemed appropriate to make sure a fully functioning signal is observed in an acceptable tolerance.
 - Specific Test Levels:
 - Around 5 Amps measured from current probe.
- o. Set the Power Amplifier values.
 - Be sure to press input cable connected to on (usually A).
 - Press the desired gain. Performed in these tests at "X50".
- p. Set the Oscilloscope to the following settings.

- Specify Probe Attenuation.
 - Measurements were performed with a Keysight 1147B Current Probe has a fixed attenuation ratio of 0.1 V/A and cannot be changed.
 - Voltage Probe from Keysight, the N2792, was used for measurements, and has fixed attenuation ratio of 5:1 after calibration with oscilloscope. Probe with Asset Number PRO0003 was used to acquire the data (60 Hz 10 kHz).
 - The data was captured with High Resolution Settings under Waveform-Acquire Menu.
- q. Turn output of Arbitrary Waveform Generator on.
- r. Level the output voltage at the offset adjust with flat head screw driver, if possible. Note if probe does not have that capability.
- s. Examine the Waveform on the Oscilloscope read from the Current Probe on the input side and the Differential Probe on the Output Side.
 - Be sure to capture 3 5 periods of the excitation signal being applied.
- t. Auto zero and Degauss the Current Probe before step i. Also Degauss where Average Current Waveform value climbs above an acceptable tolerance of +/- 10 mA.
- u. Setup included correction components for DC Biasing part of the setup. See the test setup section for a diagram. Note a 5 Ohm Resistor was in parallel with one 0.01 uF Capacitor.
- v. Record relevant data for Data Presentation.
- w. Turn off waveform generator upon completion.

Data Presentation.

In this section, data is presented as each section indicates below.

a. Transformer Ratio.

Excitation Signal	Frequency	Primary Current i _p (RMS)	Secondary Voltage Vs (RMS)	Burden Resistance	Secondary Current i _s (RMS)	Transformer Ratio (i _p / i _s)
Sinusoidal	60	3.5766	0.35567	5.2	0.06839808	52.2909439
	400	3.5831	0.36348	5.2	0.0699	51.260372
	1000	3.6129	0.36721	5.2	0.07061731	51.1616786
	10000	3.5104	0.35668	5.2	0.06859231	51.1777504
Square	60	3.9362	0.39322	5.2	0.07561923	52.0528966
	400	3.9542	0.40131	5.2	0.077175	51.2367995
	1000	3.9349	0.40047	5.2	0.07701346	51.0936649
	10000	3.8167	0.39349	5.2	0.07567115	50.4379781
Triangular	60	2.9328	0.29342	5.2	0.05642692	51.9751891
	400	2.9436	0.29861	5.2	0.057425	51.2599042
	1000	3.0231	0.30731	5.2	0.05909808	51.1539488
	10000	2.879	0.29251	5.2	0.05625192	51.1804725

Excitation Signal	Frequency (Hz)	Phase Angle (°)
Sinusoidal	60	5.70
	400	1.43
	1000	0.41
	10000	1.59
Square	60	0.39
	400	0.29
	1000	0.42
	10000	1.20
Triangular	60	4.21
	400	1.58
	1000	0.52
	10000	1.69

Phase Angle - as function of Waveform Class and Frequency.

Revision: A

Revision: A

Revision: A

Section Four: Impedance Measurements. Electromagnetic Component Testing: Test Procedures and Results.

Purpose.

This test procedure is used to determine current transformer core impedance characteristics, with no load conditions.

Test Equipment.

The test equipment shall be used as follows:

Lab Asset Number	Description	Manufacturer	Model Number	Serial Number
ANA0001	Bode 100: Network Analyzer	Omnicron Lab	None	None
ADA0001	Bode 100: Impedance Adapter	Omnicron Lab	None	None
LAB0001	Computer	AMPED	None	None

Test Procedures.

I. Impedance Measurements – Manual Procedure.

Per guidelines established from the IEEE C57.13-2016 standard, below is the procedure for manual operation of equipment for the Impedance Measurements Setup, to be applied as follows. For a more detailed and general procedure to apply the test, refer to the referenced standard described here.

- a. Turn on the measurement equipment and allow sufficient time for stabilization (e.g. 20 minutes).
- b. Be sure the current transformer is unloaded for these measurements.
- c. Be sure the Bode 100 is connected to a computer for data acquisition.
- d. Perform the internal calibration of the Network Analyzer.
 - a. Three calibration configurations: Open Measurement, Short Measurement, and Load Measurement.
- e. Perform the measurement, capturing the magnitude and phase response of the current transformer.
- f. Connect the load leads of the current transformer to the fixture of the Bode 100.

Revision: A

Data Presentation.

In this section, data is presented as each section indicates below.

- Trace 1 - Trace 2

	Cursor 1	Cursor 2	Delta C2-C1
Frequency	359.104 kHz	2.002 kHz	-357.102 kHz
Trace 1	Magnitude	Magnitude	Magnitude
Measurement	79.697 kΩ	1.223 kΩ	-78.475 kΩ
Trace 2	Phase (°)	Phase (°)	Phase (°)
Measurement	-12.499 °	86.73 °	99.229 °

Sweep	
Start frequency:	60 Hz
Stop frequency:	10 MHz
Center frequency:	5 MHz
Span:	10 MHz
Sweep mode:	Logarithmic
Numer of points:	201

Hardware setupDevice type:Bode100R2Serial number:TE817KReceiver bandwidth:300 HzOutput level:13 dBmDUT settling time:0 ms

Calibration	Full-Range	User-Range
Impedance	Active	-

Setup. Typical test setup shown below for impedance characteristics.

